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Abstract:    We propose the usage of formal languages for expressing instances of NP-complete problems for their application in 
polynomial transformations. The proposed approach, which consists of using formal language theory for polynomial transforma-
tions, is more robust, more practical, and faster to apply to real problems than the theory of polynomial transformations. In this 
paper we propose a methodology for transforming instances between NP-complete problems, which differs from Garey and 
Johnson’s. Unlike most transformations which are used for proving that a problem is NP-complete based on the NP-completeness 
of another problem, the proposed approach is intended for extrapolating some known characteristics, phenomena, or behaviors 
from a problem A to another problem B. This extrapolation could be useful for predicting the performance of an algorithm for 
solving B based on its known performance for problem A, or for taking an algorithm that solves A and adapting it to solve B. 
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1  Introduction 
 

The theory of computational complexity is a 
subject of international interest of scientific, techno-
logical, and enterprise organizations (Ruiz-Vanoye 
and Díaz-Parra, 2011). The computational complexity 
contains diverse elements such as complexity of the 
classes of problems (P, NP, NP-hard and NP-  
complete, etc.), complexity of algorithms (it is a way 
to classify the efficiency of an algorithm by means of 
execution time, to solve a problem with the worst- 
case input), complexity of instances (it is a computa-
tional complexity measure to determine the com-
plexity of the problem instances), and the complexity 

of other elements (Ruiz-Vanoye and Díaz-Parra, 
2011), for example, the complexity of neural net-
works (Bao et al., 2012). 

In computational complexity theory, there exists 
a polynomial transformation from an NP-complete 
problem A to another NP-complete problem B (Garey 
and Johnson, 1979). The investigations that served as 
foundation for the development of complexity theory 
were the following: 

1. The questions posed by D. Hilbert in 1929 
(Cook, 1983) were key for the beginning of compu-
tational complexity: (1) Is mathematics complete, in 
the sense that each mathematical statement can be 
proved or not? (2) Is mathematics consistent, in the 
sense that a statement and its negation cannot be 
proved simultaneously? (3) Is mathematics decidable, 
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in the sense that there exists a defined method that can 
be applied to any mathematical statement and that 
determines if that statement is true? Hilbert’s goal was 
to create a formal mathematical system (complete and 
consistent), in which all statements could be precisely 
formulated. His idea was to find an algorithm that 
determines the truth or falseness of any statement in 
the formal system. In German, he called this  
problem ‘Entscheidungsproblem’, meaning ‘decision 
problem’. 

2. Turing (1937) argued that Hilbert’s third 
question (the Entscheidungsproblem) could be ap-
proached with the help of a machine, at least with the 
notion of an ‘abstract machine’. Turing’s purpose, 
when describing the machines that nowadays bear his 
name, was to reduce calculations to their most concise 
essential features, describing in a simple way some 
basic procedures. 

3. Shannon (1948) proposed the complexity of 
Boolean circuits (or combinatorial complexity). For 
this measure it is convenient to assume that a function 
(f) transforms finite bit chains (A) into finite bit chains 
(B), and the complexity of f is the size of the smallest 
Boolean circuit that calculates f for all the inputs of 
size n. 

4. Rabin (1959) posed a general question: What 
does it mean that f is more difficult to compute than g? 
To answer this question, he conceived an axiomatic 
framework (emphasizing the interrelationship be-
tween seemingly diverse problems and methods for 
research in the theory of complexity of computations) 
that was the foundation for the development of 
Blum’s abstract complexity theory. 

5. Solomonoff (1960) is the first to propose the 
Kolmogorov complexity (Solomonoff, 1964a; 1964b; 
Kolmogorov, 1965), which provides a measure for the 
combinatorial complexity of an individual string x. 

6. Cobham (1964) emphasized the term ‘intrin-
sic’; i.e., he was interested in an independent-machine 
theory. He asked whether multiplication was more 
complex than addition and considered that the ques-
tion could not be answered until the theory was de-
veloped. Additionally, he defined the class L of func-
tions, i.e., functions on real numbers computable in 
time bounded by a polynomial in the decimal length 
of the input. 

7. Hartmanis and Stearns (1965) introduced the 
fundamental notion of ‘complexity measure’, which 

is defined as the computation time on a multi-tape 
Turing machine. 

8. Stockmeyer (1979) mentioned the computa-
tional complexity of some problems and common 
measures of the computational resources used by an 
algorithm: time, the number of steps executed by the 
algorithm, and space (the amount of memory used by 
the algorithm). 

9. Sipser (1983) proposed the CD-complexity. 
CDt(x) is the size of the smallest program that dis-
tinguishes x from all other strings at time t. Woznia-
kowski (1985) and Traub et al. (1988) proposed the 
information-based complexity (IBC), which seeks to 
develop general results about the intrinsic difficulty of 
solving problems where available information is par-
tial or approximate and to apply these results to spe-
cific problems. 

10. Quantum circuits were first defined by 
Deutsch (1989) and study of quantum circuit com-
plexity (quantum computational complexity) was 
initiated by Yao (1993). 

11. Orponen (1990) introduced a measure for the 
computational complexity of individual instances of a 
decision problem. 

Computational complexity theory is related to 
the measurement of the difficulty (complexity) of 
calculation. The complexity measurement shows how 
many steps are needed to evaluate any algorithm with 
a specific parameter (Hartmanis and Stearns, 1965; 
Papadimitriou, 1994). Some definitions of complex-
ity classes are mentioned related to this investigation: 
Definition 1 (P class)    P class is the class of recog-
nizable languages by a deterministic one-tape Turing 
machine in polynomial time, introduced by Karp 
(1972). Although the first individual that used an idea 
which could be considered equivalent to P was Ed-
monds (1965), Edmonds considered the algorithms in 
polynomial time as tractable algorithms. 
Definition 2 (NP class)    NP class is the class of 
recognizable languages by a non-deterministic one- 
tape Turing machine in polynomial time, introduced 
by Karp (1972). The NP class includes diverse prac-
tical problems from businesses and industry. Garey 
and Johnson (1979) presented many examples of NP 
problems. The first mathematician who used a term 
that can be taken as equivalent to NP, however, was 
James Bennett, who used the term ‘extended positive 
rudimentary relations’ based on logical operators 
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instead of computing machines (Bennett, 1962). Later, 
Cook (1971) characterized problems using the term 
L+ for the then well-known NP class defined by Karp 
(1972). 
Definition 3 (NP-easy class)    NP-easy class is the 
class of problems that are recognizable in polynomial 
time by a Turing machine with one oracle (subrou-
tine); i.e., a problem A is said to be NP-easy if it can 
be Turing reduced to some NP-complete problem 
(Jonsson and Bäckström, 1994). In other words, a 
problem X is NP-easy if, and only if, there exists a 
problem Y in NP such that X is Turing reducible (with 
oracle) in polynomial time to Y (Jonsson and Bäck-
ström, 1994). Informally, NP-easy problems are those 
problems that are at most as difficult as NP. 
Definition 4 (NP-hard class)    A problem A is 
NP-hard if each problem B in NP is reducible to A 
(Garey and Johnson, 1979; Papadimitriou and Stei-
glitz, 1982). Informally, it is the class of problems 
classified as problems of combinatorial optimization 
at least as complex as NP. 
Definition 5 (NP-equivalent class)    NP-equivalent 
class is the class of problems that are considered to be 
both NP-easy and NP-hard (Jonsson and Bäckström, 
1994). 
Definition 6 (NP-complete class)    A language L is 
NP-complete if L is in NP, and satisfiability≤PL (Cook, 
1971; Karp, 1972). NP-complete class is the class of 
problems classified as decision problems. A debate 
among researchers exists on whether Cook defined 
the NP-complete term or in fact he defined L (poly-
nomial) complete, although, generally, the definition 
of this term is attributed to him. Cook (1971) hinted at 
the NP-complete notion and demonstrated that the 
3-satisfiability problem and the sub-graph problem 
are NP-complete. Karp (1972) presented 21 polyno-
mial reductions to NP-complete problems. Informally, 
NP-complete problems are those that are complete in 
the NP class, i.e., the most difficult to solve in NP. 
Bennett et al. (1994) showed that any quantum algo-
rithm should solve a basic NP-complete problem 
(3-SAT) efficiently. 

In this paper, we propose the usage of formal 
languages to express instances of NP-complete 
problems for their application in polynomial trans-
formations. The proposed approach of using formal 
language theory for a polynomial is more robust and 
practical from a computational point of view to apply 

to real problems than the theory of polynomial 
transformations, because it is not necessary to deter-
mine equations of polynomial transformation that 
encode a transformation algorithm exactly at yes- 
instances into yes-instances. It needs only to know the 
source language, the target language, and the hard 
restrictions of the problem to apply tools of formal 
languages, some of which are automated for exploit-
ing the full characteristics of the languages. 

Unlike most transformations which are used for 
proving that a problem is NP-complete based on the 
NP-completeness of another problem, the proposed 
approach is intended for extrapolating some known 
characteristics, phenomena, or behaviors from a 
problem A to another problem B. 

 
 
2  Related works 

 
This investigation is related to the topics of 

formal languages and polynomial transformations. 
There exist several definitions of formal languages. 
The following are the most relevant:  

Brown (1960) described engineering languages 
with the objective of making a language different 
from natural language. The engineering languages are 
languages that are designed to specified objective 
criteria, and modeled to meet the criteria. 

Hopcroft and Ullman (1969) defined language as 
any set V* of sentences on an alphabet V. A sentence 
of an alphabet is any string of finite length composed 
of symbols from alphabet V. For example, if V={0, 1}, 
then V*={empty, 0, 1, 00, 01, 10, 11, 000, ...}. An 
alphabet is any finite set of symbols (digits, Latin and 
Greek letters in lower case and upper case, symbols #, 
and others).  

Cook (1971) defined a language as a set G of 
chains of symbols on a fixed, large, and finite alpha-
bet {0, 1, *}. 

Karp (1972) defined a language as a subset of Σ* 
(the set of all the finite chains of 0’s and 1’s). Karp 
defined NP-complete problems (L-complete) as fol-
lows: call L (polynomial) complete if LNP and 
every language in NP is reducible to L; i.e., it is the 
class of recognizable languages in polynomial time 
by a non-deterministic one-tape Turing machine. 

Garey and Johnson (1979) mentioned a language 
in the following way: for any finite set Σ of symbols, 
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denote by Σ* the set of all finite strings of symbols 
from Σ, if Σ={0, 1}. For example, Σ* consists of the 
empty string, the strings 0, 1, 00, 01, 10, 11, 000, 001, 
and all other finite strings of 0’s and l’s. If L is a subset 
of Σ*, we say that L is a language over the Σ alphabet. 

For polynomial transformations several defini-
tions exist (Ruiz-Vanoye et al., 2011): 

Karp (1972) defined a polynomial reduction as 
follows: considering two languages L and M, then L is 
reducible to M if there exists a function fMxL.  

Cook (1971) defined a polynomial reduction as 
follows: a set S of chains of symbols (on a fixed, large, 
and finite alphabet {0.1, *}) is polynomial reducible 
to a set T of chains of symbols (on a fixed, large, and 
finite alphabet {0.1, *}) if there exists a query ma-
chine M and a polynomial Q(n), such that for each 
input string w the computation of M with input w halts 
in Q(|w|) steps (|w| is the length of w) and ends in the 
accept state iff wS. 

Garey and Johnson (1979) defined a polynomial 
transformation from a language L1Σ1

* to a language 
L2Σ2

* as a function f: Σ1
*→Σ2

* that satisfies the 
following two conditions: (1) There is a polynomial 
time deterministic Turing machine (DTM) program 
that computes f. (2) For all xΣ1

*, xL1 if and only if 
f(x)L2. 

In this study a new approach for instance trans-
formation between NP-complete problems is pro-
posed using formal language theory. The related 
works relevant to this research are shown in Table 1. 

 
 
 
 
 
 
 
 
 
 
 
 

3  Methodology of polynomial transformation 
of instances between NP-complete problems 
using formal languages 

 
We propose the usage of the theory of formal 

languages (compiler techniques) in polynomial 

transformations. A compiler is a computer program 
(or a set of programs) that translates text written in a 
source language into another target language (Aho  
et al., 1986). For this work the phases of a compiler 
are:  

Lexical analysis: recognize and convert the 
character stream from the input source program or 
sequence of characters to valid words of the language 
or tokens. 

Syntactic analysis: consider the sequence of to-
kens for possible valid constructs of the language.  

Semantic analysis: determine the meaning of the 
language. 

Error handling: detect the lexical, syntactic, se-
mantic, and logical errors. 

Language generation: generate the target code or 
the target language. 

The proposed notion for polynomial transfor-
mations is similar to the translation from one lan-
guage to another, for example, from the English lan-
guage to the Spanish language; instead of making a 
translation between languages, the translation is car-
ried out between instances of NP-complete problems. 
In this approach, formal languages are generated for 
defining instances of NP-complete problems, to use 
them in a polynomial transformation (using a com-
piler) from a formal language L1 (corresponding to an 
NP-complete problem) to a formal language L2 (cor-
responding to another NP-complete problem). 

A language corresponds to an NP-complete 
problem when the values of the instance parameters 
of the problem can be codified in a hypothetical lan-
guage (Ruiz-Vanoye et al., 2010). For example, the 
parameters of the instance of the one-dimensional 
bin-packing problem (1D-BPP) are: num=overall 
number of items, wi=size of item i, c=bin capacity, 
k=number of bins. Therefore, the hypothetical lan-
guage of 1D-BPP is L1={BPP={num; w1, w2, w3, w4, 
w5, w6; c; k}}, and the hypothetical language with the 
values of the instance is L1={BPP={6; 10, 20, 20, 10, 
5, 5; 20; 4}}. The hypothetical language has an al-
phabet Σ and a Backus-Naur form (BNF) (Backus, 
1959) grammar or grammatical rules for the  
1D-BPP. 

Fig. 1 shows the methodology proposed for 
transforming instances from an NP-complete problem 
to instances of another NP-complete problem using 
formal language theory. 

Table 1  Related works 

Research C1 C2 C3 C4 

Karp (1972) Y N N N 
Cook (1971) Y N N N 
Garey and Johnson (1979) Y Y N N 
This work Y Y Y Y 
C1: polynomial reduction between NP-complete problems; C2: 
transformation of yes-instance to yes-instance; C3: transformation 
using formal languages of NP-complete problems; C4: transfor-
mation and solution of NP-complete problems. Y: yes; N: no 
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The steps for polynomial transformation using 
formal language theory are: 

1. Select an NP-complete problem A (source 
problem). 

2. Define a formal language L1 (source language) 
for the NP-complete problem A.  

3. Select an NP-complete problem B (target 
problem). 

4. Define a formal language L2 (target language) 
for the NP-complete problem B.  

5. Construct a compiler that transforms in 
polynomial time (L1≤PL2) a source language L1 into a 
target language L2.  

6. Optionally, it is possible to add to the phase of 
language generation an algorithm that solves target 
language L2. 

Our proposal (Fig. 2) is a new codification 
scheme of NP-complete problems based on formal 
languages, i.e., a new way to transform instances 
using a compiler from source language L1 (which 
defines yes-instances of the NP-complete problem or 
feasible solutions Y1

) to target language L2 (which 

defines yes-instances of the NP-complete problem 
Y2

). The D defines no-instances of both NP-complete 

problems.  
In the phase of lexical analysis, source language 

L1 is converted into tokens. In the phase of syntactic 
analysis, the tokens are grouped into grammatical 
sentences.  

In the phase of semantic analysis, semantic  
errors are detected in the source language, and the 
information is stored for use in the phase of language 
generation. Semantic error detection involves check- 
ing the restrictions to obtain a formal language L2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
In the language generation phase, we obtain the 

target language (the yes-instance) which uses the 
section of algorithms (procedures that realize the 
execution of diverse algorithms) for finding solutions 
to the NP-complete instances of the L2. 

The section of error control detects the lexical, 
syntactic, semantic, and logical errors of the trans-
formations from L1 to L2. 

Fig. 3 shows the methodology of polynomial 
transformation of Garey and Johnson (1979). The 
NP-complete approach consists of four steps for re-
ducing NP-complete problems (Garey and Johnson, 
1979): 

1. Show that problem B is in NP, i.e., BNP. 
2. Select a problem A known to be in the 

NP-complete class (Note: it is convenient to select a 
problem A that is similar to B). 

3. Devise a transformation algorithm f from 
problem A to problem B. 

4. Verify that f is a polynomial transformation 
function. 

In Table 2 there exist some differences between 
Garey and Johnson (1979)’s approach and ours. The 
main difference is that, our approach includes (among 
other things) checking the hard restrictions of the 
NP-complete problems by the phases of a compiler, for 
extrapolating some known characteristics, phenomena, 
or behaviors from a problem A to another problem B. 

Fig. 2  Methodology of polynomial transformation using 
formal language theory 
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In the semantic verification of the polynomial 
transformation, the compiler verifies the hard restric-
tion to validate the feasible instance (yes-instance), 
the solution of the transformed instance, and the ad-
ministration of errors during the transformation by a 
computational tool (robust and practical). This tool is 

robust because the full characteristics of the lan-
guages are exploited, and practical from a computa-
tional point of view, because an automated tool can do 
the polynomial transformation and it needs only to 
know the source language, the target language, and 
the hard restrictions of the problem. 

 
 

4  Experimentation 
 
For the experimentation the following software 

was used: Microsoft Visual C++ ver. 6.0 for coding the 
instances generator and the solution algorithms, and 
Parser Generator ver. 2.07 from Bumble-Bee Soft-
ware Ltd. (which comprises Lex/Flex and Yacc/Bison) 
for the compiler that transforms instances of the 
NP-complete problems. Fig. 4 shows the experimen-
tation scheme of the polynomial transformation using 
formal language. 

 
 
 
 
 
 
 
 
 
 
 
 
The experiments were carried out using the fol-

lowing NP-complete problems: the BPP and the 
2-partition problem (2-PAR).  

Definition of 2-PAR (Garey and Johnson, 1979; 
Martello and Toth, 1991) is: given a set of integer 
numbers U, the problem consists of determining if 
there exists a partition constituted by two disjoint 
subsets A and Ac, such that each number is assigned to 
just one subset and the sum of the numbers in subset A 
equals that of subset Ac.  

 

 1 2, ,..., ,nU  u u u                       (1) 

,A U                                   (2) 
c ,A U A                                (3) 

c ,A A                              (4) 

c

.i j
i A j A 

 u u                             (5) 

Fig. 3  Methodology of polynomial transformation of 
Garey and Johnson (1979) 
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Table 2  Differences between the two approaches 

Characteristic 
Garey and John-

son (1979)’s 
Ours

Transformation between NP-  
complete problems 

Y Y

Transformation of yes-instance to 
yes-instance 

Y Y

Transformation algorithm Y N

Compiler for the transformation N Y

Lexical verification in the transfor-
mation 

Y Y

Syntactic verification in the trans-
formation 

Y Y

Semantic verification in the trans-
formation 

N Y

Solution of the transformed instance N Y

Definition of a formal language for 
the source problem (L1) by means 
of a codification scheme 

N Y

Definition of a formal language for 
the target problem (L2) by means  
of a codification scheme 

Y Y

Administration of errors during the 
transformation 

N Y

Robust, practical, and fast develop-
ment 

N Y

Y: yes; N: no 
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Fig. 4  Process for polynomial transformation
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The input parameters of 2-PAR are shown in 
Table 3, and the output parameters in Tables 4 and 5. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Definition of 1D-BPP (Martello and Toth, 1991) 

is: given a finite set U of n objects with weights w1, 
w2, …, wn, a positive integer number c that represents 
the bin capacity, and a positive integer number K 
(maximum number of bins), the problem consists of 
determining if there exists a partition of U consisting 
of disjoint sets U1, U2, …, UK such that the sum of the 
object weights in each Ui is c or less. The output pa-
rameters of 1D-BPP are shown in Table 6, and the 
output parameters in Tables 7 and 8. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

We generated a sample of 1D-BPP instances. To 
obtain a confidence level of 99% for the sample, 27 
strata were defined, and 82 instances were generated 
for each stratum, which yielded an overall of 2214 
1D-BPP instances being used in the polynomial 
transformation. For the generated instances, we used 
the nomenclature: e (stands for strata), # (number of 
strata), i (instance), # (number of instances), .bpp 
(extension of the file) (e.g., e1i21.bpp). The ranges of 
the characteristics of the generated instances are 
shown in Table 9. 

 
 
 
 
 
 
 
 
 
 
Hereupon, the process of polynomial transfor-

mation from 1D-BPP to 2-PAR (1D-BPP≤P2-PAR) is 
described, which uses formal language theory: 

Step 1: Select an NP-complete problem A 
(source problem) for polynomial transformation. 
1D-BPP was selected since it is a problem widely 
known to be NP-complete (Martello and Toth, 1991).  

Step 2: Define a formal language L1 (source 
language) for the NP-complete problem A. For ex-
ample, for the 1D-BPP we defined an alphabet Σ={0, 
1, 2, 3, 4, 5, 6, 7, 8, 9, ‘{’, ‘}’, ‘,’, ‘;’, ‘=’, ‘B’, ‘P’}, 
and the following BNF grammar: 

 
<instance>:=<NameProblem> <Equal> <sentences>; 
<sentences>:=<KOpen> <TNum> <semicolon> 

<Num> <semicolon> <NumCap> <KClose>; 
<TNum>:=<Num>; 
<NumCap>:=<Num>; 
<Num>:=<Num> <Comma> | <Integer>; 
<Integer>:=<Digit>{<Digit>}*; 
<Digit>:=0|1|2|3|4|5|6|7|8|9; 
<NameProblem>:=‘BPP’; 
<Equal>:=‘=’;  
<KOpen>:=‘{’;  
<KClose>:=‘}’;  
<semicolon>:=‘;’;  
<Comma>:=‘,’; 

Table 3  Input parameters for the 2-PAR problem 

Input Meaning 

n Overall number of integers 

ui Vector of positive integer numbers (i=1, 2, …, n)

Table 4  Output parameters of the 2-PAR decision problem

Output Meaning 

True/False Positive or negative answer to the question

Table 5  Output parameters of the 2-PAR combinatorial 
optimization problem 

Output Meaning 

A Subset of integer numbers of the solution 

Ac Complement subset of integer numbers of the 
solution 

Table 6  Input parameters of 1D-BPP 

Input Meaning 

n Number of objects 

wi Object weight (size) (i=1, 2, ..., n) 

c Capacity of bins 

K Maximum number of bins 

Table 7  Output parameters of the 1D-BPP decision 
problem 

Output Meaning 

True/False Positive or negative answer to the question

Table 8  Output parameters of the 1D-BPP combinato-
rial optimization problem 

Output Meaning 

M Value of the optimal solution (smallest num-
ber of bins) 

Ai Subset of objects assigned to each bin in the 
solution (i=1, 2, …, n) 

Table 9  Ranges of characteristic values 

Characteristic Range 

Number of objects, n S (10−333), M (340−660),  
B (670−1000) 

Object size, s  S (10−8325), M (40−16 500),  
B (670−25 000) 

Bin capacity, c S (50−1 386 112), M (6800− 
5 445 000), B (224 450−12 500 000)

S=small, M=medium, B=big 
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Step 3: Select an NP-complete problem B (target 
problem). We selected 2-PAR, since it is known to be 
NP-complete (Martello and Toth, 1991). 

Step 4: Define a formal language L2 (target 
language) for the NP-complete problem B. For ex-
ample, for 2-PAR, we defined an alphabet Σ={0, 1, 2, 
3, 4, 5, 6, 7, 8, 9, ‘{’, ‘}’, ‘,’, ‘;’, ‘=’, ‘A’, ‘P’, ‘R’}, 
and a BNF grammar: 

 
<instance>:=<NameProblem> <Equal> <sentences>; 
<sentences>:=<KOpen> <TNum> <semicolon> 

<Num> <KClose>; 
<TNum>:=<Num>; 
<Num>:=<Num> <Comma> | <Integer>; 
<Integer>:=<Digit>{<Digit>}*; 
<Digit>:=0|1|2|3|4|5|6|7|8|9; 
<NameProblem>:=‘PAR’; 
<Equal>:=‘=’;  
<KOpen>:=‘{’;  
<KClose>:=‘}’;  
<semicolon>:=‘;’;  
<Comma>:=‘,’; 
 

Step 5: Construct a compiler that transforms 
from source language L1 to target language L2 being 
used to perform the polynomial transformation from 
1D-BPP to 2-PAR (1D-BPP≤P2-PAR).  

In the phase of lexical analysis of the compiler, a 
source language L1 is transformed into tokens (from a 
symbol table). Fig. 5 shows the token declaration for 
the GNU Flex software used in the lexical phase. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In the syntactic analysis phase, tokens from 

source language L1 are grouped into grammatical 

phrases. In the semantic analysis phase, semantic 
errors are detected (error handling) in source lan-
guage L1, and information resulting from these 
analyses is stored for the language generation phase. 
In the phase of error handling or error control, the 
lexical, syntactic, semantic, and logical errors of the 
transformations from L1 to L2 are detected. The error 
types shown in Table 10 were defined. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In the phase of semantic analysis the restrictions 

were checked that allow a formal language L2 (in-
stance) to be obtained for 2-PAR. For the phase of 
semantic analysis one of the hard restrictions of 
2-PAR was defined in the parser generator software 
called GNU Bison (Levine, 2009), which states that 
the sum of the integer numbers (sumintegers) must be 
divisible by two; if not, the result of the transforma-
tion is an invalid instance for 2-PAR and the trans-
formation is not carried out. 

 
// Semantic restriction for 2-PAR 
divisible=sumintegers%2; 
if (divisible==0) 
{ transform_instances(); } 
else  
{ printf(“Semantic error, transformation not  
realized”); } 

// Declarations 
A [aA]   B [bB]    C [cC]   D [dD]   E [eE]   F [fF]    
G [gG]   H [hH]   I [iI]   J [jJ]   K [kK]   L [lL]    
M [mM]   N [nN]   O [oO] P [pP]   Q [qQ]    
R [rR]   S [sS]    T [tT]    U [uU]  V[vV]    
W [wW] X [xX] Y [yY]  Z [zZ]  Digit [0-9]  
// Rules 
‘=’             return(EQUAL); 
‘,’              return(COMMA); 
‘;’              return(SEMICOLON); 
‘{’             return(KOPEN); 
‘}’             return(KCLOSE); 
[Digit]+    return(DIGSEQ); 
.                { /* Ignore bad characters */ } 

Fig. 5  Tokens for the lexical phase 

Table 10  Error types defined for the error control phase

Error Description 

101 Lexical error, symbol, or character (token) not 
admitted in the instance language 

102 Syntactic error, ‘;’ was expected 

103 Syntactic error, ‘,’ was expected 

104 Syntactic error, INTEGERNUM was expected 

105 Syntactic error, ‘{’ was expected 

106 Syntactic error, ‘}’ was expected 

107 Syntactic error, ‘=’ was expected 

108 Syntactic error, ‘BPP’ was expected 
109 Semantic error, the instance cannot be trans-

formed, and it does not satisfy the hard restric-
tion of 2-PAR 

110 Language generation error, impossible to create 
the target file 

111 Language generation error, source file INSTA-
CELIST cannot be found 

112 Language generation error, impossible to create 
an indicator file 



Ruiz-Vanoye et al. / J Zhejiang Univ-Sci C (Comput & Electron)   2013 14(8):623-633 631

The phase of language generation (instance so-
lution) includes a process to generate language ex-
pressions for 2-PAR instances; in addition, it contains 
a procedure that realizes the execution of diverse 
algorithms for finding solutions to 2-PAR instances. 
The algorithms used to solve transformed instances of 
2-PAR are: 

1. First fit decreasing algorithm (FFD). With this 
algorithm the numbers are first placed in a list sorted 
in non-increasing order. Then each number is picked 
orderly from the list and placed into the first set that 
has enough unused space to hold it (Note: the avail-
able space of groups A and Ac is set to the sum of all 
the numbers that can be divided by two). 

2. Best fit decreasing algorithm (BFD). The only 
difference between FFD and BFD is that the numbers 
are not placed in the first group that can hold them, 
but in the group with the smallest unused space that 
can hold them. 

3. Match to first fit algorithm (MFF). It is a 
variation of FFD that includes complementary groups 
(besides A and Ac). The algorithm asks for a per-
centage value (which is the amount of group space 
that can be left empty and qualify as a ‘good fit’) and 
a number of complementary groups. Each of these 
complementary groups is intended for temporarily 
holding numbers in a unique range of values. As the 
list of numbers is processed, each number is examined 
to determine if it can be assigned to a new group with 
numbers of a complementary group according to the 
same value range and getting a good fit, or packed in a 
partially filled group, or packed alone in a comple-
mentary group. Finally, all the numbers in the com-
plementary groups are extracted and packed in ordi-
nary groups (A and Ac) according to the basic algo-
rithm FFD, but without using number ordering. 

4. Match to best fit algorithm (MBF). It is a 
variation of BFD and similar to MFF, except for the 
basic algorithm used. It uses BFD without ordering 
the numbers. 

Incidentally, these algorithms are usually applied 
to solve 1D-BPP instances, so they were adopted to 
solve the transformed 2-PAR instances. 

The results of the experimentation on the sample 
instances (transformed from 1D-BPP) using the pre-
ceding algorithms (30 runs were executed on each 
instance) are shown in Table 11. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The results obtained from the experiments were: 

1161 yes-instances and 1053 no-instances of 2-PAR 
transformed from a total of 2214 1D-BPP yes- 
instances, as well as the solution to the 1161 trans-
formed 2-PAR instances. 

By way of example, we carried out the verifica-
tion of the results for one instance. Consider source 
language L1 that represents a 1D-BPP yes-instance A 
and target language L2 that represents a 2-PAR yes- 
instance B. 

 
L1=BPP={50; 26 502, 19 171, 15 726, 11 480, 29 360, 
26 964, 24 466, 5707, 28 147, 23 283, 16 829, 9963, 
493, 2997, 11 944, 4829, 5438, 32 393, 14 606, 3904, 
155, 294, 12 384, 17 423, 18 718, 26 502, 19 171, 
15 726, 11 480, 29 360, 26 964, 24 466, 5707, 28 147, 
23 283, 16 829, 9963, 493, 2997, 11 944, 4829, 5438, 
32 393, 14 606, 3904, 155, 294, 12 384, 17 423, 18 718; 
181 588; 4}. 

 
In order for the compiler to be able to transform 

this instance (L1), it checks (among other lexical, 
syntactic, and semantic aspects) a hard restriction, 
which states that the sum of all the object weights 
must be divisible by two. 

 
sum=(26 502+19 171+…+17 423+18 718)=726 352. 
divisible=726 352/2=363 176. 

 
The result ‘divisible’ indicates that the hard 

condition is satisfied; therefore, it is possible to 
transform L1 (1D-BPP yes-instance) into L2 (2-PAR 
yes-instance). 

Table 11  Results of experimentation on the instances

Time (min)* 
Instance Solution

FFD BFD MFF MBF

e1i1 25 0 0 0 0 

e1i2 225 0 0 0.01 0 

e1i3 85 0 0 0 0 

e1i4 225 0.01 0 0 0 

e1i5 25 0 0 0 0 

e1i6 105 0.01 0 0 0 

e1i7 115 0 0 0 0 

… … … … … … 

e27i82 3 672 235 0.01 0 0 0 
* The value was so small (between 0 and 0.01 min) that a 0 value was 
reported 
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Afterwards, it is necessary, using the compiler, to 
transform language L1 into language L2. As a result of 
compiler execution, parameter n=50 in L1 was trans-
formed into n=50 in L2. Each parameter si in L1 was 
transformed into si in L2 (Note: the transformation 
simply assigns the value of si in L1 to si in L2). 

 
si de L1: 26502, 19171, …, 17423, 18718. 
si de L2: 26502, 19171, …, 17423, 18718. 
 
Parameter c=181 588 in L1 was transformed into 

c=363 176 in L2: 
 
L2=PAR={50; 26 502, 19 171, …, 17 423, 

18 718; 363 176}. 
 

Finally, parameter K=4 in L1 was transformed 
into two subsets of a partition. 

 
 

5  Conclusions 
 
The proposed polynomial transformation using 

formal language theory is similar to a translation from 
one language to another, so if language rules are sat-
isfied it is possible to carry out a translation that is 
correct and intelligible. In this paper we have shown 
that the use of formal language theory makes it pos-
sible to transform a yes-instance of an NP-complete 
problem to a yes-instance of another NP-complete 
problem. 

Insightful readers might notice that the example 
transformation from 1D-BPP to 2-PAR is carried out 
inversely as it is usually performed. The transforma-
tion from 2-PAR to 1D-BPP is usually realized to 
prove that 1D-BPP is NP-complete, assuming that 
2-PAR is NP-complete. However, in our example we 
carried out this transformation for obtaining indica-
tors that predicted the performance of optimization 
algorithms applied to 2-PAR based on the previously 
known performance of these algorithms when applied 
to 1D-BPP. 

As a result of this investigation, we found sev-
eral differences between what was mentioned in Ga-
rey and Johnson (1979) about the polynomial trans-
formations that Karp and Cook realized, and the 
definitions of polynomial reductions in Cook (1971) 
and Karp (1972). 

For future work, we think it could be convenient 
to use the methodology of polynomial transformation 
using formal language theory to transform the lan-
guages of P problems to languages of NP-complete 
problems. 

In addition, we propose to realize investigations 
on families of polynomial transformations with a set 
of NP-complete problems (Ruiz-Vanoye et al., 2011) 
by the methodology of polynomial transformation 
using formal language theory. 
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