
Ruiz-Vanoye et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2013 14(8):623-633 623

Application of formal languages in polynomial

transformations of instances between NP-complete problems

Jorge A. RUIZ-VANOYE†1, Joaquín PÉREZ-ORTEGA2, Rodolfo A. PAZOS RANGEL3,

Ocotlán DÍAZ-PARRA1, Héctor J. FRAIRE-HUACUJA3, Juan FRAUSTO-SOLÍS4,

Gerardo REYES-SALGADO5, Laura CRUZ-REYES3
(1DACI, Universidad Autónoma del Carmen, Cd. del Carmen 24180, Mexico)

(2Computer Science, Centro Nacional de Investigación y Desarrollo Tecnológico, Cuernavaca 62490, Mexico)

(3Systems and Computer Science, Instituto Tecnológico de Ciudad Madero, Ciudad Madero 89440, Mexico)

(4Informatics, Universidad Politécnica del Estado de Morelos, Jiutepec 62560, Mexico)

(5Computer Science, Instituto Tecnológico de Cuautla, Cuautla 62745, Mexico)
†E-mail: jorge@ruizvanoye.com

Received Dec. 3, 2012; Revision accepted Mar. 19, 2013; Crosschecked July 12, 2013

Abstract: We propose the usage of formal languages for expressing instances of NP-complete problems for their application in
polynomial transformations. The proposed approach, which consists of using formal language theory for polynomial transforma-
tions, is more robust, more practical, and faster to apply to real problems than the theory of polynomial transformations. In this
paper we propose a methodology for transforming instances between NP-complete problems, which differs from Garey and
Johnson’s. Unlike most transformations which are used for proving that a problem is NP-complete based on the NP-completeness
of another problem, the proposed approach is intended for extrapolating some known characteristics, phenomena, or behaviors
from a problem A to another problem B. This extrapolation could be useful for predicting the performance of an algorithm for
solving B based on its known performance for problem A, or for taking an algorithm that solves A and adapting it to solve B.

Key words: Formal languages, Polynomial transformations, NP-completeness
doi:10.1631/jzus.C1200349 Document code: A CLC number: TP301.5

1 Introduction

The theory of computational complexity is a
subject of international interest of scientific, techno-
logical, and enterprise organizations (Ruiz-Vanoye
and Díaz-Parra, 2011). The computational complexity
contains diverse elements such as complexity of the
classes of problems (P, NP, NP-hard and NP-
complete, etc.), complexity of algorithms (it is a way
to classify the efficiency of an algorithm by means of
execution time, to solve a problem with the worst-
case input), complexity of instances (it is a computa-
tional complexity measure to determine the com-
plexity of the problem instances), and the complexity

of other elements (Ruiz-Vanoye and Díaz-Parra,
2011), for example, the complexity of neural net-
works (Bao et al., 2012).

In computational complexity theory, there exists
a polynomial transformation from an NP-complete
problem A to another NP-complete problem B (Garey
and Johnson, 1979). The investigations that served as
foundation for the development of complexity theory
were the following:

1. The questions posed by D. Hilbert in 1929
(Cook, 1983) were key for the beginning of compu-
tational complexity: (1) Is mathematics complete, in
the sense that each mathematical statement can be
proved or not? (2) Is mathematics consistent, in the
sense that a statement and its negation cannot be
proved simultaneously? (3) Is mathematics decidable,

Journal of Zhejiang University-SCIENCE C (Computers & Electronics)

ISSN 1869-1951 (Print); ISSN 1869-196X (Online)

www.zju.edu.cn/jzus; www.springerlink.com

E-mail: jzus@zju.edu.cn

© Zhejiang University and Springer-Verlag Berlin Heidelberg 2013

Ruiz-Vanoye et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2013 14(8):623-633 624

in the sense that there exists a defined method that can
be applied to any mathematical statement and that
determines if that statement is true? Hilbert’s goal was
to create a formal mathematical system (complete and
consistent), in which all statements could be precisely
formulated. His idea was to find an algorithm that
determines the truth or falseness of any statement in
the formal system. In German, he called this
problem ‘Entscheidungsproblem’, meaning ‘decision
problem’.

2. Turing (1937) argued that Hilbert’s third
question (the Entscheidungsproblem) could be ap-
proached with the help of a machine, at least with the
notion of an ‘abstract machine’. Turing’s purpose,
when describing the machines that nowadays bear his
name, was to reduce calculations to their most concise
essential features, describing in a simple way some
basic procedures.

3. Shannon (1948) proposed the complexity of
Boolean circuits (or combinatorial complexity). For
this measure it is convenient to assume that a function
(f) transforms finite bit chains (A) into finite bit chains
(B), and the complexity of f is the size of the smallest
Boolean circuit that calculates f for all the inputs of
size n.

4. Rabin (1959) posed a general question: What
does it mean that f is more difficult to compute than g?
To answer this question, he conceived an axiomatic
framework (emphasizing the interrelationship be-
tween seemingly diverse problems and methods for
research in the theory of complexity of computations)
that was the foundation for the development of
Blum’s abstract complexity theory.

5. Solomonoff (1960) is the first to propose the
Kolmogorov complexity (Solomonoff, 1964a; 1964b;
Kolmogorov, 1965), which provides a measure for the
combinatorial complexity of an individual string x.

6. Cobham (1964) emphasized the term ‘intrin-
sic’; i.e., he was interested in an independent-machine
theory. He asked whether multiplication was more
complex than addition and considered that the ques-
tion could not be answered until the theory was de-
veloped. Additionally, he defined the class L of func-
tions, i.e., functions on real numbers computable in
time bounded by a polynomial in the decimal length
of the input.

7. Hartmanis and Stearns (1965) introduced the
fundamental notion of ‘complexity measure’, which

is defined as the computation time on a multi-tape
Turing machine.

8. Stockmeyer (1979) mentioned the computa-
tional complexity of some problems and common
measures of the computational resources used by an
algorithm: time, the number of steps executed by the
algorithm, and space (the amount of memory used by
the algorithm).

9. Sipser (1983) proposed the CD-complexity.
CDt(x) is the size of the smallest program that dis-
tinguishes x from all other strings at time t. Woznia-
kowski (1985) and Traub et al. (1988) proposed the
information-based complexity (IBC), which seeks to
develop general results about the intrinsic difficulty of
solving problems where available information is par-
tial or approximate and to apply these results to spe-
cific problems.

10. Quantum circuits were first defined by
Deutsch (1989) and study of quantum circuit com-
plexity (quantum computational complexity) was
initiated by Yao (1993).

11. Orponen (1990) introduced a measure for the
computational complexity of individual instances of a
decision problem.

Computational complexity theory is related to
the measurement of the difficulty (complexity) of
calculation. The complexity measurement shows how
many steps are needed to evaluate any algorithm with
a specific parameter (Hartmanis and Stearns, 1965;
Papadimitriou, 1994). Some definitions of complex-
ity classes are mentioned related to this investigation:
Definition 1 (P class) P class is the class of recog-
nizable languages by a deterministic one-tape Turing
machine in polynomial time, introduced by Karp
(1972). Although the first individual that used an idea
which could be considered equivalent to P was Ed-
monds (1965), Edmonds considered the algorithms in
polynomial time as tractable algorithms.
Definition 2 (NP class) NP class is the class of
recognizable languages by a non-deterministic one-
tape Turing machine in polynomial time, introduced
by Karp (1972). The NP class includes diverse prac-
tical problems from businesses and industry. Garey
and Johnson (1979) presented many examples of NP
problems. The first mathematician who used a term
that can be taken as equivalent to NP, however, was
James Bennett, who used the term ‘extended positive
rudimentary relations’ based on logical operators

Ruiz-Vanoye et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2013 14(8):623-633 625

instead of computing machines (Bennett, 1962). Later,
Cook (1971) characterized problems using the term
L+ for the then well-known NP class defined by Karp
(1972).
Definition 3 (NP-easy class) NP-easy class is the
class of problems that are recognizable in polynomial
time by a Turing machine with one oracle (subrou-
tine); i.e., a problem A is said to be NP-easy if it can
be Turing reduced to some NP-complete problem
(Jonsson and Bäckström, 1994). In other words, a
problem X is NP-easy if, and only if, there exists a
problem Y in NP such that X is Turing reducible (with
oracle) in polynomial time to Y (Jonsson and Bäck-
ström, 1994). Informally, NP-easy problems are those
problems that are at most as difficult as NP.
Definition 4 (NP-hard class) A problem A is
NP-hard if each problem B in NP is reducible to A
(Garey and Johnson, 1979; Papadimitriou and Stei-
glitz, 1982). Informally, it is the class of problems
classified as problems of combinatorial optimization
at least as complex as NP.
Definition 5 (NP-equivalent class) NP-equivalent
class is the class of problems that are considered to be
both NP-easy and NP-hard (Jonsson and Bäckström,
1994).
Definition 6 (NP-complete class) A language L is
NP-complete if L is in NP, and satisfiability≤PL (Cook,
1971; Karp, 1972). NP-complete class is the class of
problems classified as decision problems. A debate
among researchers exists on whether Cook defined
the NP-complete term or in fact he defined L (poly-
nomial) complete, although, generally, the definition
of this term is attributed to him. Cook (1971) hinted at
the NP-complete notion and demonstrated that the
3-satisfiability problem and the sub-graph problem
are NP-complete. Karp (1972) presented 21 polyno-
mial reductions to NP-complete problems. Informally,
NP-complete problems are those that are complete in
the NP class, i.e., the most difficult to solve in NP.
Bennett et al. (1994) showed that any quantum algo-
rithm should solve a basic NP-complete problem
(3-SAT) efficiently.

In this paper, we propose the usage of formal
languages to express instances of NP-complete
problems for their application in polynomial trans-
formations. The proposed approach of using formal
language theory for a polynomial is more robust and
practical from a computational point of view to apply

to real problems than the theory of polynomial
transformations, because it is not necessary to deter-
mine equations of polynomial transformation that
encode a transformation algorithm exactly at yes-
instances into yes-instances. It needs only to know the
source language, the target language, and the hard
restrictions of the problem to apply tools of formal
languages, some of which are automated for exploit-
ing the full characteristics of the languages.

Unlike most transformations which are used for
proving that a problem is NP-complete based on the
NP-completeness of another problem, the proposed
approach is intended for extrapolating some known
characteristics, phenomena, or behaviors from a
problem A to another problem B.

2 Related works

This investigation is related to the topics of

formal languages and polynomial transformations.
There exist several definitions of formal languages.
The following are the most relevant:

Brown (1960) described engineering languages
with the objective of making a language different
from natural language. The engineering languages are
languages that are designed to specified objective
criteria, and modeled to meet the criteria.

Hopcroft and Ullman (1969) defined language as
any set V* of sentences on an alphabet V. A sentence
of an alphabet is any string of finite length composed
of symbols from alphabet V. For example, if V={0, 1},
then V*={empty, 0, 1, 00, 01, 10, 11, 000, ...}. An
alphabet is any finite set of symbols (digits, Latin and
Greek letters in lower case and upper case, symbols #,
and others).

Cook (1971) defined a language as a set G of
chains of symbols on a fixed, large, and finite alpha-
bet {0, 1, *}.

Karp (1972) defined a language as a subset of Σ*
(the set of all the finite chains of 0’s and 1’s). Karp
defined NP-complete problems (L-complete) as fol-
lows: call L (polynomial) complete if LNP and
every language in NP is reducible to L; i.e., it is the
class of recognizable languages in polynomial time
by a non-deterministic one-tape Turing machine.

Garey and Johnson (1979) mentioned a language
in the following way: for any finite set Σ of symbols,

Ruiz-Vanoye et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2013 14(8):623-633 626

denote by Σ* the set of all finite strings of symbols
from Σ, if Σ={0, 1}. For example, Σ* consists of the
empty string, the strings 0, 1, 00, 01, 10, 11, 000, 001,
and all other finite strings of 0’s and l’s. If L is a subset
of Σ*, we say that L is a language over the Σ alphabet.

For polynomial transformations several defini-
tions exist (Ruiz-Vanoye et al., 2011):

Karp (1972) defined a polynomial reduction as
follows: considering two languages L and M, then L is
reducible to M if there exists a function fMxL.

Cook (1971) defined a polynomial reduction as
follows: a set S of chains of symbols (on a fixed, large,
and finite alphabet {0.1, *}) is polynomial reducible
to a set T of chains of symbols (on a fixed, large, and
finite alphabet {0.1, *}) if there exists a query ma-
chine M and a polynomial Q(n), such that for each
input string w the computation of M with input w halts
in Q(|w|) steps (|w| is the length of w) and ends in the
accept state iff wS.

Garey and Johnson (1979) defined a polynomial
transformation from a language L1Σ1

* to a language
L2Σ2

* as a function f: Σ1
*→Σ2

* that satisfies the
following two conditions: (1) There is a polynomial
time deterministic Turing machine (DTM) program
that computes f. (2) For all xΣ1

*, xL1 if and only if
f(x)L2.

In this study a new approach for instance trans-
formation between NP-complete problems is pro-
posed using formal language theory. The related
works relevant to this research are shown in Table 1.

3 Methodology of polynomial transformation
of instances between NP-complete problems
using formal languages

We propose the usage of the theory of formal

languages (compiler techniques) in polynomial

transformations. A compiler is a computer program
(or a set of programs) that translates text written in a
source language into another target language (Aho
et al., 1986). For this work the phases of a compiler
are:

Lexical analysis: recognize and convert the
character stream from the input source program or
sequence of characters to valid words of the language
or tokens.

Syntactic analysis: consider the sequence of to-
kens for possible valid constructs of the language.

Semantic analysis: determine the meaning of the
language.

Error handling: detect the lexical, syntactic, se-
mantic, and logical errors.

Language generation: generate the target code or
the target language.

The proposed notion for polynomial transfor-
mations is similar to the translation from one lan-
guage to another, for example, from the English lan-
guage to the Spanish language; instead of making a
translation between languages, the translation is car-
ried out between instances of NP-complete problems.
In this approach, formal languages are generated for
defining instances of NP-complete problems, to use
them in a polynomial transformation (using a com-
piler) from a formal language L1 (corresponding to an
NP-complete problem) to a formal language L2 (cor-
responding to another NP-complete problem).

A language corresponds to an NP-complete
problem when the values of the instance parameters
of the problem can be codified in a hypothetical lan-
guage (Ruiz-Vanoye et al., 2010). For example, the
parameters of the instance of the one-dimensional
bin-packing problem (1D-BPP) are: num=overall
number of items, wi=size of item i, c=bin capacity,
k=number of bins. Therefore, the hypothetical lan-
guage of 1D-BPP is L1={BPP={num; w1, w2, w3, w4,
w5, w6; c; k}}, and the hypothetical language with the
values of the instance is L1={BPP={6; 10, 20, 20, 10,
5, 5; 20; 4}}. The hypothetical language has an al-
phabet Σ and a Backus-Naur form (BNF) (Backus,
1959) grammar or grammatical rules for the
1D-BPP.

Fig. 1 shows the methodology proposed for
transforming instances from an NP-complete problem
to instances of another NP-complete problem using
formal language theory.

Table 1 Related works

Research C1 C2 C3 C4

Karp (1972) Y N N N
Cook (1971) Y N N N
Garey and Johnson (1979) Y Y N N
This work Y Y Y Y
C1: polynomial reduction between NP-complete problems; C2:
transformation of yes-instance to yes-instance; C3: transformation
using formal languages of NP-complete problems; C4: transfor-
mation and solution of NP-complete problems. Y: yes; N: no

Ruiz-Vanoye et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2013 14(8):623-633 627

The steps for polynomial transformation using
formal language theory are:

1. Select an NP-complete problem A (source
problem).

2. Define a formal language L1 (source language)
for the NP-complete problem A.

3. Select an NP-complete problem B (target
problem).

4. Define a formal language L2 (target language)
for the NP-complete problem B.

5. Construct a compiler that transforms in
polynomial time (L1≤PL2) a source language L1 into a
target language L2.

6. Optionally, it is possible to add to the phase of
language generation an algorithm that solves target
language L2.

Our proposal (Fig. 2) is a new codification
scheme of NP-complete problems based on formal
languages, i.e., a new way to transform instances
using a compiler from source language L1 (which
defines yes-instances of the NP-complete problem or
feasible solutions Y1

) to target language L2 (which

defines yes-instances of the NP-complete problem
Y2

). The D defines no-instances of both NP-complete

problems.
In the phase of lexical analysis, source language

L1 is converted into tokens. In the phase of syntactic
analysis, the tokens are grouped into grammatical
sentences.

In the phase of semantic analysis, semantic
errors are detected in the source language, and the
information is stored for use in the phase of language
generation. Semantic error detection involves check-
ing the restrictions to obtain a formal language L2.

In the language generation phase, we obtain the

target language (the yes-instance) which uses the
section of algorithms (procedures that realize the
execution of diverse algorithms) for finding solutions
to the NP-complete instances of the L2.

The section of error control detects the lexical,
syntactic, semantic, and logical errors of the trans-
formations from L1 to L2.

Fig. 3 shows the methodology of polynomial
transformation of Garey and Johnson (1979). The
NP-complete approach consists of four steps for re-
ducing NP-complete problems (Garey and Johnson,
1979):

1. Show that problem B is in NP, i.e., BNP.
2. Select a problem A known to be in the

NP-complete class (Note: it is convenient to select a
problem A that is similar to B).

3. Devise a transformation algorithm f from
problem A to problem B.

4. Verify that f is a polynomial transformation
function.

In Table 2 there exist some differences between
Garey and Johnson (1979)’s approach and ours. The
main difference is that, our approach includes (among
other things) checking the hard restrictions of the
NP-complete problems by the phases of a compiler, for
extrapolating some known characteristics, phenomena,
or behaviors from a problem A to another problem B.

Fig. 2 Methodology of polynomial transformation using
formal language theory

2π
D

2π
Y

πD
1

πY
1

A
L
P
H
A
B
E
T
,
B
N
F

A
L
P
H
A
B
E
T
,
B
N
F

1π 2π

L1

L2

COMPILER

Lexical analysis

Syntactic analysis

Semantic analysis

Language generation

Symbols Error control

Algorithms

SolutionsInstances

Fig. 1 Polynomial transformation using formal language
theory

N
P

C

in
st

an
ce

s

Lexical, syntactic &
semantic analysis, and
generation of language

Definition of
formal

languages

Definition of
formal

languages

L1 L2

Polynomial transfor-
mation (compiler)

N
P

C

in
st

an
ce

s

Ruiz-Vanoye et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2013 14(8):623-633 628

In the semantic verification of the polynomial
transformation, the compiler verifies the hard restric-
tion to validate the feasible instance (yes-instance),
the solution of the transformed instance, and the ad-
ministration of errors during the transformation by a
computational tool (robust and practical). This tool is

robust because the full characteristics of the lan-
guages are exploited, and practical from a computa-
tional point of view, because an automated tool can do
the polynomial transformation and it needs only to
know the source language, the target language, and
the hard restrictions of the problem.

4 Experimentation

For the experimentation the following software

was used: Microsoft Visual C++ ver. 6.0 for coding the
instances generator and the solution algorithms, and
Parser Generator ver. 2.07 from Bumble-Bee Soft-
ware Ltd. (which comprises Lex/Flex and Yacc/Bison)
for the compiler that transforms instances of the
NP-complete problems. Fig. 4 shows the experimen-
tation scheme of the polynomial transformation using
formal language.

The experiments were carried out using the fol-

lowing NP-complete problems: the BPP and the
2-partition problem (2-PAR).

Definition of 2-PAR (Garey and Johnson, 1979;
Martello and Toth, 1991) is: given a set of integer
numbers U, the problem consists of determining if
there exists a partition constituted by two disjoint
subsets A and Ac, such that each number is assigned to
just one subset and the sum of the numbers in subset A
equals that of subset Ac.

 1 2, ,..., ,nU  u u u (1)

,A U (2)
c ,A U A  (3)

c ,A A  (4)

c

.i j
i A j A 

 u u (5)

Fig. 3 Methodology of polynomial transformation of
Garey and Johnson (1979)

2π
D

1π
f Y()

π1 f

e

2[,]πL e

A
L
P
H
A
B
E
T

π : Decision problem
Y: yes-instances
D: no-instances

L: language
e: codification scheme
f: transformation function

1π
D

1π
Y

2π
Y

2π

*

Table 2 Differences between the two approaches

Characteristic
Garey and John-

son (1979)’s
Ours

Transformation between NP-
complete problems

Y Y

Transformation of yes-instance to
yes-instance

Y Y

Transformation algorithm Y N

Compiler for the transformation N Y

Lexical verification in the transfor-
mation

Y Y

Syntactic verification in the trans-
formation

Y Y

Semantic verification in the trans-
formation

N Y

Solution of the transformed instance N Y

Definition of a formal language for
the source problem (L1) by means
of a codification scheme

N Y

Definition of a formal language for
the target problem (L2) by means
of a codification scheme

Y Y

Administration of errors during the
transformation

N Y

Robust, practical, and fast develop-
ment

N Y

Y: yes; N: no

Definition
of formal
language

BPP
instances

Polynomial trans-
formation (compiler)

Lexical, syntactic &
semantic analysis,

language generation,
algorithms

expressions

BPP instances
as language

Definition
of formal
language

2-PAR
instances

2-PAR instances
as language
expressions

Solutions

Fig. 4 Process for polynomial transformation

Ruiz-Vanoye et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2013 14(8):623-633 629

The input parameters of 2-PAR are shown in
Table 3, and the output parameters in Tables 4 and 5.

Definition of 1D-BPP (Martello and Toth, 1991)

is: given a finite set U of n objects with weights w1,
w2, …, wn, a positive integer number c that represents
the bin capacity, and a positive integer number K
(maximum number of bins), the problem consists of
determining if there exists a partition of U consisting
of disjoint sets U1, U2, …, UK such that the sum of the
object weights in each Ui is c or less. The output pa-
rameters of 1D-BPP are shown in Table 6, and the
output parameters in Tables 7 and 8.

We generated a sample of 1D-BPP instances. To
obtain a confidence level of 99% for the sample, 27
strata were defined, and 82 instances were generated
for each stratum, which yielded an overall of 2214
1D-BPP instances being used in the polynomial
transformation. For the generated instances, we used
the nomenclature: e (stands for strata), # (number of
strata), i (instance), # (number of instances), .bpp
(extension of the file) (e.g., e1i21.bpp). The ranges of
the characteristics of the generated instances are
shown in Table 9.

Hereupon, the process of polynomial transfor-

mation from 1D-BPP to 2-PAR (1D-BPP≤P2-PAR) is
described, which uses formal language theory:

Step 1: Select an NP-complete problem A
(source problem) for polynomial transformation.
1D-BPP was selected since it is a problem widely
known to be NP-complete (Martello and Toth, 1991).

Step 2: Define a formal language L1 (source
language) for the NP-complete problem A. For ex-
ample, for the 1D-BPP we defined an alphabet Σ={0,
1, 2, 3, 4, 5, 6, 7, 8, 9, ‘{’, ‘}’, ‘,’, ‘;’, ‘=’, ‘B’, ‘P’},
and the following BNF grammar:

<instance>:=<NameProblem> <Equal> <sentences>;
<sentences>:=<KOpen> <TNum> <semicolon>

<Num> <semicolon> <NumCap> <KClose>;
<TNum>:=<Num>;
<NumCap>:=<Num>;
<Num>:=<Num> <Comma> | <Integer>;
<Integer>:=<Digit>{<Digit>}*;
<Digit>:=0|1|2|3|4|5|6|7|8|9;
<NameProblem>:=‘BPP’;
<Equal>:=‘=’;
<KOpen>:=‘{’;
<KClose>:=‘}’;
<semicolon>:=‘;’;
<Comma>:=‘,’;

Table 3 Input parameters for the 2-PAR problem

Input Meaning

n Overall number of integers

ui Vector of positive integer numbers (i=1, 2, …, n)

Table 4 Output parameters of the 2-PAR decision problem

Output Meaning

True/False Positive or negative answer to the question

Table 5 Output parameters of the 2-PAR combinatorial
optimization problem

Output Meaning

A Subset of integer numbers of the solution

Ac Complement subset of integer numbers of the
solution

Table 6 Input parameters of 1D-BPP

Input Meaning

n Number of objects

wi Object weight (size) (i=1, 2, ..., n)

c Capacity of bins

K Maximum number of bins

Table 7 Output parameters of the 1D-BPP decision
problem

Output Meaning

True/False Positive or negative answer to the question

Table 8 Output parameters of the 1D-BPP combinato-
rial optimization problem

Output Meaning

M Value of the optimal solution (smallest num-
ber of bins)

Ai Subset of objects assigned to each bin in the
solution (i=1, 2, …, n)

Table 9 Ranges of characteristic values

Characteristic Range

Number of objects, n S (10−333), M (340−660),
B (670−1000)

Object size, s S (10−8325), M (40−16 500),
B (670−25 000)

Bin capacity, c S (50−1 386 112), M (6800−
5 445 000), B (224 450−12 500 000)

S=small, M=medium, B=big

Ruiz-Vanoye et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2013 14(8):623-633 630

Step 3: Select an NP-complete problem B (target
problem). We selected 2-PAR, since it is known to be
NP-complete (Martello and Toth, 1991).

Step 4: Define a formal language L2 (target
language) for the NP-complete problem B. For ex-
ample, for 2-PAR, we defined an alphabet Σ={0, 1, 2,
3, 4, 5, 6, 7, 8, 9, ‘{’, ‘}’, ‘,’, ‘;’, ‘=’, ‘A’, ‘P’, ‘R’},
and a BNF grammar:

<instance>:=<NameProblem> <Equal> <sentences>;
<sentences>:=<KOpen> <TNum> <semicolon>

<Num> <KClose>;
<TNum>:=<Num>;
<Num>:=<Num> <Comma> | <Integer>;
<Integer>:=<Digit>{<Digit>}*;
<Digit>:=0|1|2|3|4|5|6|7|8|9;
<NameProblem>:=‘PAR’;
<Equal>:=‘=’;
<KOpen>:=‘{’;
<KClose>:=‘}’;
<semicolon>:=‘;’;
<Comma>:=‘,’;

Step 5: Construct a compiler that transforms
from source language L1 to target language L2 being
used to perform the polynomial transformation from
1D-BPP to 2-PAR (1D-BPP≤P2-PAR).

In the phase of lexical analysis of the compiler, a
source language L1 is transformed into tokens (from a
symbol table). Fig. 5 shows the token declaration for
the GNU Flex software used in the lexical phase.

In the syntactic analysis phase, tokens from

source language L1 are grouped into grammatical

phrases. In the semantic analysis phase, semantic
errors are detected (error handling) in source lan-
guage L1, and information resulting from these
analyses is stored for the language generation phase.
In the phase of error handling or error control, the
lexical, syntactic, semantic, and logical errors of the
transformations from L1 to L2 are detected. The error
types shown in Table 10 were defined.

In the phase of semantic analysis the restrictions

were checked that allow a formal language L2 (in-
stance) to be obtained for 2-PAR. For the phase of
semantic analysis one of the hard restrictions of
2-PAR was defined in the parser generator software
called GNU Bison (Levine, 2009), which states that
the sum of the integer numbers (sumintegers) must be
divisible by two; if not, the result of the transforma-
tion is an invalid instance for 2-PAR and the trans-
formation is not carried out.

// Semantic restriction for 2-PAR
divisible=sumintegers%2;
if (divisible==0)
{ transform_instances(); }
else
{ printf(“Semantic error, transformation not
realized”); }

// Declarations
A [aA] B [bB] C [cC] D [dD] E [eE] F [fF]
G [gG] H [hH] I [iI] J [jJ] K [kK] L [lL]
M [mM] N [nN] O [oO] P [pP] Q [qQ]
R [rR] S [sS] T [tT] U [uU] V[vV]
W [wW] X [xX] Y [yY] Z [zZ] Digit [0-9]
// Rules
‘=’ return(EQUAL);
‘,’ return(COMMA);
‘;’ return(SEMICOLON);
‘{’ return(KOPEN);
‘}’ return(KCLOSE);
[Digit]+ return(DIGSEQ);
. { /* Ignore bad characters */ }

Fig. 5 Tokens for the lexical phase

Table 10 Error types defined for the error control phase

Error Description

101 Lexical error, symbol, or character (token) not
admitted in the instance language

102 Syntactic error, ‘;’ was expected

103 Syntactic error, ‘,’ was expected

104 Syntactic error, INTEGERNUM was expected

105 Syntactic error, ‘{’ was expected

106 Syntactic error, ‘}’ was expected

107 Syntactic error, ‘=’ was expected

108 Syntactic error, ‘BPP’ was expected
109 Semantic error, the instance cannot be trans-

formed, and it does not satisfy the hard restric-
tion of 2-PAR

110 Language generation error, impossible to create
the target file

111 Language generation error, source file INSTA-
CELIST cannot be found

112 Language generation error, impossible to create
an indicator file

Ruiz-Vanoye et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2013 14(8):623-633 631

The phase of language generation (instance so-
lution) includes a process to generate language ex-
pressions for 2-PAR instances; in addition, it contains
a procedure that realizes the execution of diverse
algorithms for finding solutions to 2-PAR instances.
The algorithms used to solve transformed instances of
2-PAR are:

1. First fit decreasing algorithm (FFD). With this
algorithm the numbers are first placed in a list sorted
in non-increasing order. Then each number is picked
orderly from the list and placed into the first set that
has enough unused space to hold it (Note: the avail-
able space of groups A and Ac is set to the sum of all
the numbers that can be divided by two).

2. Best fit decreasing algorithm (BFD). The only
difference between FFD and BFD is that the numbers
are not placed in the first group that can hold them,
but in the group with the smallest unused space that
can hold them.

3. Match to first fit algorithm (MFF). It is a
variation of FFD that includes complementary groups
(besides A and Ac). The algorithm asks for a per-
centage value (which is the amount of group space
that can be left empty and qualify as a ‘good fit’) and
a number of complementary groups. Each of these
complementary groups is intended for temporarily
holding numbers in a unique range of values. As the
list of numbers is processed, each number is examined
to determine if it can be assigned to a new group with
numbers of a complementary group according to the
same value range and getting a good fit, or packed in a
partially filled group, or packed alone in a comple-
mentary group. Finally, all the numbers in the com-
plementary groups are extracted and packed in ordi-
nary groups (A and Ac) according to the basic algo-
rithm FFD, but without using number ordering.

4. Match to best fit algorithm (MBF). It is a
variation of BFD and similar to MFF, except for the
basic algorithm used. It uses BFD without ordering
the numbers.

Incidentally, these algorithms are usually applied
to solve 1D-BPP instances, so they were adopted to
solve the transformed 2-PAR instances.

The results of the experimentation on the sample
instances (transformed from 1D-BPP) using the pre-
ceding algorithms (30 runs were executed on each
instance) are shown in Table 11.

The results obtained from the experiments were:

1161 yes-instances and 1053 no-instances of 2-PAR
transformed from a total of 2214 1D-BPP yes-
instances, as well as the solution to the 1161 trans-
formed 2-PAR instances.

By way of example, we carried out the verifica-
tion of the results for one instance. Consider source
language L1 that represents a 1D-BPP yes-instance A
and target language L2 that represents a 2-PAR yes-
instance B.

L1=BPP={50; 26 502, 19 171, 15 726, 11 480, 29 360,
26 964, 24 466, 5707, 28 147, 23 283, 16 829, 9963,
493, 2997, 11 944, 4829, 5438, 32 393, 14 606, 3904,
155, 294, 12 384, 17 423, 18 718, 26 502, 19 171,
15 726, 11 480, 29 360, 26 964, 24 466, 5707, 28 147,
23 283, 16 829, 9963, 493, 2997, 11 944, 4829, 5438,
32 393, 14 606, 3904, 155, 294, 12 384, 17 423, 18 718;
181 588; 4}.

In order for the compiler to be able to transform

this instance (L1), it checks (among other lexical,
syntactic, and semantic aspects) a hard restriction,
which states that the sum of all the object weights
must be divisible by two.

sum=(26 502+19 171+…+17 423+18 718)=726 352.
divisible=726 352/2=363 176.

The result ‘divisible’ indicates that the hard

condition is satisfied; therefore, it is possible to
transform L1 (1D-BPP yes-instance) into L2 (2-PAR
yes-instance).

Table 11 Results of experimentation on the instances

Time (min)*
Instance Solution

FFD BFD MFF MBF

e1i1 25 0 0 0 0

e1i2 225 0 0 0.01 0

e1i3 85 0 0 0 0

e1i4 225 0.01 0 0 0

e1i5 25 0 0 0 0

e1i6 105 0.01 0 0 0

e1i7 115 0 0 0 0

… … … … … …

e27i82 3 672 235 0.01 0 0 0
* The value was so small (between 0 and 0.01 min) that a 0 value was
reported

Ruiz-Vanoye et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2013 14(8):623-633 632

Afterwards, it is necessary, using the compiler, to
transform language L1 into language L2. As a result of
compiler execution, parameter n=50 in L1 was trans-
formed into n=50 in L2. Each parameter si in L1 was
transformed into si in L2 (Note: the transformation
simply assigns the value of si in L1 to si in L2).

si de L1: 26502, 19171, …, 17423, 18718.
si de L2: 26502, 19171, …, 17423, 18718.

Parameter c=181 588 in L1 was transformed into

c=363 176 in L2:

L2=PAR={50; 26 502, 19 171, …, 17 423,

18 718; 363 176}.

Finally, parameter K=4 in L1 was transformed
into two subsets of a partition.

5 Conclusions

The proposed polynomial transformation using

formal language theory is similar to a translation from
one language to another, so if language rules are sat-
isfied it is possible to carry out a translation that is
correct and intelligible. In this paper we have shown
that the use of formal language theory makes it pos-
sible to transform a yes-instance of an NP-complete
problem to a yes-instance of another NP-complete
problem.

Insightful readers might notice that the example
transformation from 1D-BPP to 2-PAR is carried out
inversely as it is usually performed. The transforma-
tion from 2-PAR to 1D-BPP is usually realized to
prove that 1D-BPP is NP-complete, assuming that
2-PAR is NP-complete. However, in our example we
carried out this transformation for obtaining indica-
tors that predicted the performance of optimization
algorithms applied to 2-PAR based on the previously
known performance of these algorithms when applied
to 1D-BPP.

As a result of this investigation, we found sev-
eral differences between what was mentioned in Ga-
rey and Johnson (1979) about the polynomial trans-
formations that Karp and Cook realized, and the
definitions of polynomial reductions in Cook (1971)
and Karp (1972).

For future work, we think it could be convenient
to use the methodology of polynomial transformation
using formal language theory to transform the lan-
guages of P problems to languages of NP-complete
problems.

In addition, we propose to realize investigations
on families of polynomial transformations with a set
of NP-complete problems (Ruiz-Vanoye et al., 2011)
by the methodology of polynomial transformation
using formal language theory.

References

Aho, A.V., Sethi, R., Ullman, J.D., 1986. Compilers: Principles.
Techniques, and Tools. Addison-Wesley, USA, p.14-16.

Backus, J.W., 1959. The Syntax and Semantics of the Proposed
International Algebraic Language of the Zurich Associa-
tion for Computing Machinery (ACM) and the Associa-
tion for Applied Mathematics and Mechanics (GAMM)
Conference. Proc. Int. Conf. on Information Processing,
p.125-132.

Bao, J., Zhou, L.J., Yan, Y., 2012. Analysis on complexity of
neural networks using integer weights. Appl. Math. Inf.
Sci., 6:317-323.

Bennett, J.H., 1962. On Spectra. PhD Thesis, Princeton Uni-
versity, USA.

Bennett, C.H., Brassard, G., Jozsa, R., Mayers, D., Peres, A.,
Schumacher, B., Wootters, W.K., 1994. Reduction of
quantum entropy by reversible extraction of classical in-
formation. J. Mod. Opt., 41(12):2307-2314. [doi:10.1080/
09500349414552161]

Brown, J.C., 1960. Loglan. Sci. Am., 202:53-63. [doi:10.1038/
scientificamerican0660-53]

Cobham, A., 1964. The Intrinsic Computational Difficulty of
Functions. Proc. Congress for Logic, Mathematics, and
Philosophy of Science, p.24-30.

Cook, S.A., 1971. The Complexity of Theorem Proving Pro-
cedures. Proc. 3rd ACM Symp. on Theory of Computing,
p.151-158.

Cook, S.A., 1983. An overview of computational complexity.
Commun. ACM, 26(6):400-408. [doi:10.1145/358141.
358144]

Deutsch, D., 1989. Quantum computational networks. Proc. R.
Soc. Lond. A, 425(1868):73-90. [doi:10.1098/rspa.1989.
0099]

Edmonds, J., 1965. Paths, trees, and flowers. Canad. J. Math.,
17:449-467. [doi:10.4153/CJM-1965-045-4]

Garey, M.R., Johnson, D.S., 1979. Computers and Intractabil-
ity: a Guide to the Theory of NP-Completeness. W.H.
Freeman and Company, New York, p.1-10.

Hartmanis, J., Stearns, R.E., 1965. On the computational
complexity of algorithms. Trans. Am. Math. Soc., 117(5):
285-306. [doi:10.1090/S0002-9947-1965-0170805-7]

Hopcroft, J., Ullman, J., 1969. Formal Languages and Their
Relation to Automata. Addison-Wesley, USA, p.1-7.

Ruiz-Vanoye et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2013 14(8):623-633 633

Jonsson, P., Bäckström, C., 1994. Complexity Results for
State-Variable Planning under Mixed Syntactical and
Structural Restriction. Proc. 6th Int. Conf. on Artificial
Intelligence: Methodology, Systems, Applications, p.205-
213.

Karp, R.M., 1972. Reducibility among Combinatorial Prob-
lems. In: Miller, R.E., Thatcher, J.W. (Eds.), Complexity
of Computer Computations. Plenum Press, New York,
p.85-104. [doi:10.1007/978-1-4684-2001-2_9]

Kolmogorov, A.N., 1965. Three approaches to the quantitative
definition of information. Prob. Inf. Transm., 1:1-7.

Levine, J., 2009. Flex & Bison. O′Reilly Media, USA.
Martello, S., Toth, P., 1991. Knapsack Problems: Algorithms

and Computer Implementations. John Wiley & Sons,
England, p.221-236.

Orponen, P., 1990. On the Instance Complexity of NP-Hard
Problems. Proc. 5th Annual Structure in Complexity
Theory Conf., p.20-27. [doi:10.1109/SCT.1990.113951]

Papadimitriou, C., Steiglitz, K., 1982. Combinatorial Optimi-
zation: Algorithms and Complexity. Prentice-Hall, New
Jersey, p.342-357.

Papadimitriou, C.H., 1994. Computational Complexity.
Addison-Wesley, UK, p.260-265.

Rabin, M.O., 1959. Speed of Computation and Classification
of Recursive Sets. Third Convention of Scientific Socie-
ties, p.1-2.

Ruiz-Vanoye, J.A., Díaz-Parra, O., 2011. An overview of the
theory of instances computational complexity. Int. J.
Combin. Optim. Probl. Inf., 2(2):21-27.

Ruiz-Vanoye, J.A., Díaz-Parra, O., Pérez-Ortega, J., Pazos,
R.A., Reyes Salgado, G., González-Barbosa, J.J., 2010.
Complexity of Instances for Combinatorial Optimization
Problems. In: Al-Dahoud, A. (Ed.), Computational Intel-
ligence & Modern Heuristics, Chapter 19. IN-TECH
Education and Publishing, p.319-330. [doi:10.5772/7807]

Ruiz-Vanoye, J.A., Pérez-Ortega, J., Pazos R.A., Díaz-Parra,
O., Frausto-Solís, J., Fraire-Huacuja, H.J., Cruz-Reyes, L.,
Martínez-Flores, J.A., 2011. Survey of polynomial
transformations between NP-complete problems. J.
Comput. Appl. Math., 235(16):4851-4865. [doi:10.1016/j.
cam.2011.02.018]

Shannon, C.E., 1948. The mathematical theory of communi-
cation. Bell Syst. Techn. J., 27(3):379-423. [doi:10.1002/j.
1538-7305.1948.tb01338.x]

Sipser, M., 1983. A Complexity Theoretic Approach to Ran-
domness. Proc. 15th ACM Symp. on Theory of Com-
puting, p.330-335.

Solomonoff, R., 1960. A Preliminary Report on a General
Theory of Inductive Inference. Report V-131, Zator Co.,
Cambridge, MA.

Solomonoff, R., 1964a. A formal theory of inductive inference.
Part I. Inf. Control, 7(1):1-22. [doi:10.1016/S0019-9958
(64)90223-2]

Solomonoff, R., 1964b. A formal theory of inductive inference.
Part II. Inf. Control, 7(2):224-254. [doi:10.1016/S0019-
9958(64)90131-7]

Stockmeyer, L.J., 1979. Classifying the Computational Com-
plexity of Problems. Research Report RC 7606, Mathe-
matical Sciences Department, IBM Thomas J. Watson
Research Center, Yorktown Heights, NY.

Traub, J.F., Wasilkowski, G.W., Woźniakowski, H., 1988.
Information-Based Complexity. Academic Press, New
York.

Turing, A.M., 1937. On computable numbers, with an appli-
cation to the Entscheidungsproblem. Proc. Lond. Math.
Soc., s2-42(1):230-265. [doi:10.1112/plms/s2-42.1.230]

Wozniakowski, H., 1985. Survey of information-based com-
plexity. J. Compl., 1(1):11-44. [doi:10.1016/0885-064X
(85)90020-2]

Yao, A.C., 1993. Quantum Circuit Complexity. Proc. 34th
Annual IEEE Symp. on Foundations of Computer Sci-
ence, p.352-361.

